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Unified Cross-modal Translation of Score Images, Symbolic Music, and Performance Audio

Demo Website

 •  The first successful end-to-end system that converts sheet music images directly into performance audio(I2A).
 
 •  State-of-the-art results in core tasks such as Optical Music Recognition (OMR).
 
 •  Introduction of the YouTube Score Video (YTSV) dataset, with over 1,300 hours of paired score images and performance audio.

Overview
 •  Music can be represented in different formats—score images, music notation (e.g., Mu-
sicXML), MIDI, and audio—yet most existing methods focus on only one or two tasks (e.g., 
Optical Music Recognition, Automatic Music Transcription) separately.

 

 •  This research proposes a unified framework approach to simultaneously learn multiple 
cross-modal music translation tasks along the model directions.

 •  By training with far-modal translations, the model implicitly learns to bridge intermediate 
steps, which enhances performance on related near-modal tasks.

YouTube Score Video (YTSV) Dataset
 •  12,217 videos, 433,920 image-audio pairs, totaling about 1,341 hours of music. 
 

 •  Alignment of sheet images (slide by slide) with recorded performance audio.
 

 •  Emphasis on classical piano, smaller ensembles (string quartets, etc.), covering a diverse 
repertoire.

Evaluation Method & Results
◦  Optical Music Recognition(OMR)
 

 •  Symbol Error Rate (SER) metric on LMX 
token sequences.[1]  

◦  Automatic Music Transcription(AMT)
 

 •  Note-F1 score implemented in the 
mir-eval library.[2]

◦  Audio-to-Image(A2I)
 

 •  Evaluate the results by comparing LMX token 
histograms from generated and ground truth 
scores using Earth Mover’s Distance (EMD).

 •  Compute EMD separately for pitch and duration  •  Compute EMD separately for pitch and duration 
tokens, with ±1 shift for durations to account for 
meter interpretation differences.

◦  MIDI-to-Audio(M2A; Performance Audio Synthesis)
  

 •  Transcribe the output audio with Onsets and Frames model[4] and calculate Note-F1 
score on 3 different onset thresholds(50, 100, 200ms).

 •  Frechet Audio Distance(FAD)[5] as a general audio quality metric.

◦  Image-to-Audio(I2A)
 

 •  Calculate Note-F1 score and FAD like in M2A, but apply Dynamic Time-Warping(DTW) 
between the transcribed MIDI and the ground truth MIDI, before calculating Note-F1 score. 

 •  In the "multi stage" strategies (Image → MusicXML → MIDI → Audio), pre-trained models  •  In the "multi stage" strategies (Image → MusicXML → MIDI → Audio), pre-trained models 
to perform each translation step as a baseline: Zeus[1] for OMR, VirtuosoNet[6] for perfor-
mance modeling, and Music Spectrogram Diffusion[7] for audio synthesis.
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Data distribution of the YouTube Score Video datasetAn example of score-following video on YouTube
Slides of sheet music are aligned to the corresponding points in 
audio. Each systems are then cropped out from the slides.

Model Architecture
 •  Single seq2seq transformer encoder-decoder with a unified vocabulary across image, 
audio, and symbolic tokens.

 

 •  Transformer sub-decoder for decoding the multi-codebook RVQ tokens.
 

 •  Two main model directions:
 

     Image→Audio (I2A)     Image→Audio (I2A): OMR (image→LMX), Performance Audio Synthesis(MIDI-to-audio), 
and the image-to-audio task.

 

     Audio→Image (A2I): AMT(audio-to-MIDI), Engraving(LMX-to-image), and the audio-to- 
image task.

 

Four modalities of music representation in the modal spectrum, along with six cross-modal translation tasks 

OMR Results in SER, compared to Zeus[1]. Lower is better.
AMT results in note onset F1 score for test set, compared
to Maman et al. (2022)[3]. Higher is better.

Audio-to-image generation accuracy in EMD on BPSD

Histograms of prediction/GT duration tokensHistograms of prediction/GT pitch tokens Accuracy of image-to-audio generation in terms of note onset F1 score and FAD

(a) Ground Truth MIDI

(c) DTW Alignment of (b) on (a)

(b) Generated & Trasncribed MIDI
MIDI-to-audio synthesis accuracy in F1 and FAD on BPSD


